这道题与 77. Construct Binary Tree from Inorder and Postorder Traversal 的思路几乎一模一样。
所以不多做赘述了,解法上也没有太多创新,考点依旧是对二叉树深度遍历的理解。
#include <vector>
#include <cstddef>
#include <algorithm>
using std::vector; using std::next; using std::prev;
struct TreeNode {
int val;
TreeNode *left;
TreeNode *right;
TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};
class Solution {
public:
using cIter = vector<int>::const_iterator;
TreeNode *buildTree(vector<int> &preorder, vector<int> &inorder) {
return buildTree(preorder.cbegin(), preorder.cend(), inorder.cbegin(), inorder.cend());
}
TreeNode *buildTree(cIter preBeg, cIter preEnd, cIter inBeg, cIter inEnd) {
if (preBeg >= preEnd || inBeg >= inEnd) return NULL;
TreeNode *root = new TreeNode(*preBeg);
auto inRoot = std::find(inBeg, inEnd, root->val);
root->left = buildTree(next(preBeg), next(preBeg, inRoot-inBeg+1), inBeg, inRoot);
root->right = buildTree(next(preBeg, inRoot-inBeg+1), preEnd, next(inRoot), inEnd);
return root;
}
};